Z-scores, Matrix Inverses \& Least Squares Regression (use R as you proceed)

Alternatively, given
$\mathrm{L}<-$ function (n) diag(n) - matrix $(1 / n, n, n)$
So we can use $L(3) \% * \% X$ as our X.d \#TRY IT!
$>t(X . d) \% * \% X . d$ \#same as $t(X . d) \% * \% X$ (or $\left.X^{\prime} L X\right)$
[,1] [,2] \#square, symmetric
$[1] \quad 8 \quad$,2 \#NB: SSqr/(n-1)=8/2 for column. 1
$[2] \quad$,
> Z.scrs <-scale(X) \#i.e., 'zscores'
[1,] $0.0 \quad 1$ \#each z score=(dev.score/sd)
$[2] \quad$,0.50 \#sum (sqd.col.z-scores=sqrt(n-1))
$[3]-0.5-$,
$>\mathbf{Z}<-\mathbf{Z} . \mathbf{s c r s} / \mathbf{s q r t (2)}$ \#because $\mathrm{n}=3$ here
$>Z<-Z . s c r s / s q r t(2)$ \#i.e. sqrt(n-1)
$>Z \quad$ \#Note that col. sums of sqrs $=1.00$
$[1] \quad$,
$\left[\begin{array}{lll}{[2,]} & 0.707 & 0.000\end{array}\right.$
$[3]-0.707-$,
$>\mathbf{t}(\mathbf{Z}) \%$ \% \% Z \#equals cor (X) (same as cor(Z))
[,1] [,2] \#call this matrix R
$[1] \quad 1.0 \quad$,
$[2] \quad 0.5 \quad$,
>R-inverse<-solve(R) \#diag values always=or > 1 [,1] [,2]
[1,] 1.333-0.667 \#So R \%*\% R-Inverse $=\mathbf{I}$
$[2]-,0.6671 .333$
>S.min.2<-diag(solve(R)) \#a vector here (1.33)
$>$ S.sqrd<-diag(1/S.min.2) \#diag matrix
$[, 1][, 2]$ \#Be sure to see ?diag (and try)
$[1]$,0.750 .00 \#complements of $\mathrm{smc}^{\prime} \mathrm{s}!\left(1-\mathrm{smc}^{\prime} \mathrm{s}\right)$
$[2]$,0.000 .75 \#next, subtract these from $1^{\prime} s$.
$>$ D.smc=diag (2) -S.sqrd
\#NB: D.smc $=\mathbf{I}-\mathbf{S}^{\mathbf{2}}$ [diag(2)=I, of order 2]
[,1] [,2] \#squared multiple correlations
$[1] \quad$,0.250 .00 \#in the diagonals
$[2] \quad$,

Begin from ANY X for which columns are no interdependent.
(I'd recommend a small
matrix, not necessarily the one I show at left; make sure \#rows >\#cols) Compute vector of means and subtract to get deviation scores say X.d
$(\leftarrow$ see example). We
see that
$X^{\prime} L X$ is always square, symmetric.
\& $X^{\prime} L X=(n-1) * \operatorname{var}(X)$.
Be sure to do all the Operations.
(L is known to be idempotent; look it up)

Z scores entail
rescaling columns of X.d so that each entry in Z of form [Z.scrs] $=(X[i, j]-m e a n) / s d$.
Divide by square root of ($n-1$) to get what I call matrix Z, where, $Z^{\prime} Z=R$, the matrix of product-moment correlations,i.e., cor (X) \leftarrow example shows that matrix R is computed this way. Examine those columns of Z.
Now compute the inverse of R (w/solve) to get another square, symmetric matrix. Define $S^{-2}=\operatorname{diag}\left(R^{-1}\right)$, (see S.min. 2 on left; also S.sqrd on left). $S^{2}=$ inverse $\left(S^{-2}\right)$ [a diag] Compute D.smc=I-S ${ }^{2}$, a diag matrix of squared multiple correlations when predicting each column of Z (or X) from all other columns.

\#Note that the function below gets all the key results available from input correlation matrix (if X itself not available)[copy/paste to R] allr.wts <-function(rr) \{
\# rr assumed to be correlation matrix of full column rank; function
\# generates all sqrd multiple correlations (D.smc), predicting each variable
\# from all p-1 others; also, all vectors of regression coefficients (B.wts)
\# for same predictions; also all p-2 order partial correlations (R.part2)
pp<-ncol(rr) \#usually p denotes number of variables/
r.inv<-solve(rr) \#inverse of rr
S.min.2<-diag(r.inv) \# a vector
S.sqrd<-1/S.min. 2 \#also a vector

S<-sqrt(S.sqrd) \#still a vector
S.sqrd<-diag(S.sqrd) \#now diag matrix

S<-diag(S) \#now diag matrix
D.smc<-diag (pp) -S.sqrd
B.wts<-diag(pp) - r.inv\%*\%S.sqrd \#Note: diagonal values always zero here R.part2<-round(diag(pp) - S\%*\%r.inv\%*\%S,3) \#a square, symmetric matrix
\#special virtue of R.part2 wts is that these are regression wts (for post-

```
#multipling the matrix Z%*%S.minus1) that always fall in interval [0,1]
list(D.smc=diag(D.smc),B.wts=B.wts,R.part2) } #So we try the function:
```

```
>allr.wts(cor(X))
$D.smc [1] 0.25 0.25
$B.wts
[1,] 0.0 0.5
[2,] 0.5 0.0
$R.part2 #study the code in the function; this is an example of I - SR
[1,] 0.0 0.5
[2,] 0.5 0.0 #Of course we will appreciate this more when p is larger
```


Exercise:

Try these ops for (first few rows?) of trees data, or * *most quantitative data matrices, but use no more than say 10 rows; w/ say, 3 columns in your trials. You can of course do this multiple times, and if you do study what you get with reference to my notes given here.

