
Z-scores, Matrix Inverses & Least Squares Regression (use R as you proceed) 
X  #we define X as: 
[1,]   3    3  #plot these two columns! 
[2,]   5    2  #to see the scatterplot 
[3,]   1    1 
> apply(X,2,mean) 
[1] 3 2  
> apply(X,2,sd) #so, var4 1 
[1] 2 1 
> X.d<-sweep(X,2,colMeans(X)) #see ?sweep 
> X.d  #of course this is our L%*%X (see below) 
[1,]   0    1  #note: column sums now zero 
[2,]   2    0 
[3,]  -2   -1 
Alternatively, given  
L <- function(n)diag(n) - matrix(1/n,n,n) 
So we can use L(3)%*%X as our X.d  #TRY IT! 
> t(X.d)%*%X.d #same as t(X.d)%*%X (or X’L X) 
     [,1] [,2] #square, symmetric 
[1,]   8    2 #NB: SSqr/(n-1)=8/2 for column.1 
[2,]   2    2 
> Z.scrs <-scale(X) #i.e., ‘zscores’ 
[1,]  0.0   1 #each z score=(dev.score/sd) 
[2,]  0.5   0 #sum(sqd.col.z-scores=sqrt(n-1)) 
[3,] -0.5  -1 
> Z<-Z.scrs/sqrt(2) #because n = 3 here 
> Z<-Z.scrs/sqrt(2) #i.e. sqrt(n-1) 
> Z      #Note that col. sums of sqrs = 1.00 
[1,]  0.000  0.707 
[2,]  0.707  0.000 
[3,] -0.707 -0.707 
> t(Z)%*%Z #equals cor(X)(same as cor(Z)) 
     [,1] [,2]  #call this matrix R 
[1,]  1.0  0.5 
[2,]  0.5  1.0 
>R-inverse<-solve(R) #diag values always=or > 1 
       [,1]   [,2]  
[1,]  1.333 -0.667  #So R %*% R-Inverse = I 
[2,] -0.667  1.333 
>S.min.2<-diag(solve(R)) #a vector here (1.33) 
> S.sqrd<-diag(1/S.min.2) #diag matrix 
     [,1] [,2]  #Be sure to see ?diag (and try) 
[1,] 0.75 0.00 #complements of smc’s! (1-smc’s) 
[2,] 0.00 0.75 #next, subtract these from 1’s. 
> D.smc=diag(2)-S.sqrd  
    #NB: D.smc = I - S2 [diag(2)=I,of order 2] 
     [,1] [,2] #squared multiple correlations 
[1,] 0.25 0.00  #in the diagonals 
[2,] 0.00 0.25 
 
 

Begin from ANY X for   
which columns are no 
interdependent. 
(I’d recommend a small 
matrix, not necessarily 
the one I show at left; 
make sure #rows >#cols) 
Compute vector of  
means and subtract       
to get deviation scores, 
say X.d 
( see example). We      
see that     
X’L X is always   
  square, symmetric.       
& X’LX=(n-1)*var(X) .    
Be sure to do all the 
Operations. 
(L is known to be 
idempotent; look it up) 
 
Z scores entail  
rescaling columns of   
X.d so that each entry   
in Z of form [Z.scrs]           
=(X[i,j]-mean)/sd. 
Divide by square root 
of (n-1) to get what I 
call matrix Z, where, 
Z’Z = R, the matrix of 
product-moment 
correlations,i.e.,cor(X) 
 example shows that     a 
matrix R is computed  
this way. Examine those 
columns of Z.  
Now compute the      
inverse of R (w/solve)    
to get another square,   
symmetric matrix.  
Define S-2 = diag(R-1), 
(see S.min.2 on left;   
also S.sqrd on left). 
S2=inverse(S-2)[a diag] 
Compute D.smc=I-S2, a   
diag matrix of squared    
multiple correlations   
when predicting each 
column of Z (or X) from  
all other columns. 



>sqrt(diag(2)-S.sqrd) 
     [,1] [,2]#square roots=multiple correlatns  
[1,]  0.5  0.0 #but with only one predictor, 
[2,]  0.0  0.5 #these=original product-moment  
                correlations (say, p-m r’s) 
 
>Z.resds<-Z%*%solve(R)%*%S.sqrd 
       [,1]   [,2] #residuals for predicting 
[1,] -0.354  0.707 #col.vectors of matrix Z 
[2,]  0.707 -0.354 #a DIRECT product operation 
[3,] -0.354 -0.354  
VERIFY ABOVE USING STANDARD R functions! 
> residuals(lsfit(Z[,2],Z[,1])) 
[1] -0.354  0.707 -0.354 [now as row of course] 
> residuals(lsfit(Z[,1],Z[,2])) 
[1]  0.707 -0.354 -0.354 #for the two columns 
>B.wts <-diag(2) - solve(R)%*%S.sqrd  
#could also get Predicted Z columns by 
#subtraction 
>Z%*%B.wts #examine this carefully 
       #l.s. predicted Z’s in each column 
       [,1]   [,2] 
[1,]  0.354  0.000 #obtained by subtracting 
[2,]  0.000  0.354 #residuals from original Z’s 

[3 [3,] -0.354 -0.354  
 
Th   The geometry for these ops is especially                    
mp   simple when there are only two columns in X. 
 
    Satisfy yourself that you can describe all 
    geometric relations using (this?) example. 
 
 

 
 
Next we see that 
Z.resds=ZR-1S2,the re-  
siduals, predicting    
each variable from all 
others. So by subtrac-  
tion we obtain ALL  
predicted values: 
Z.pred = Z - ZR-1S2, 
Or Z.pred = Z(I- R-1S2) 
where matrix in ( )’s     
is B = I – R-1S2 with  
columns as vectors of     
l.s. regression coefs  
for predicting each 
variable from all others. 
[B.wts on left] 
Note the generality:  
All the preceding  
algebra works for any 
(data) matrix X, 
regardless of how many 
variables there are in   X 
(as long as X’s cols are 
not mutually inter-  
dependent).              
The matrix I – SR-1S 
contains PARTIAL 
correlations between   
each pair of variables 
while ‘holding other 
variables constant’. 
(Recall dihedral angles 
in the geometry hndout)    

 #Note that the function below gets all the key results available from 
input correlation matrix (if X itself not available)[copy/paste to R]  
allr.wts <-function(rr){ 
# rr assumed to be correlation matrix of full column rank; function 
# generates all sqrd multiple correlations (D.smc), predicting each variable  
# from all p-1 others; also, all vectors of regression coefficients (B.wts) 
# for same predictions; also all p-2 order partial correlations (R.part2)  
pp<-ncol(rr) #usually p denotes number of variables/ 
r.inv<-solve(rr) #inverse of rr 
S.min.2<-diag(r.inv) # a vector 
S.sqrd<-1/S.min.2 #also a vector 
S<-sqrt(S.sqrd) #still a vector 
S.sqrd<-diag(S.sqrd) #now diag matrix 
S<-diag(S) #now diag matrix 
D.smc<-diag(pp)-S.sqrd 
B.wts<-diag(pp) - r.inv%*%S.sqrd #Note: diagonal values always zero here 
R.part2<-round(diag(pp) - S%*%r.inv%*%S,3) #a square,symmetric matrix 
#special virtue of R.part2 wts is that these are regression wts (for post- 



#multipling the matrix Z%*%S.minus1) that always fall in interval [0,1] 
list(D.smc=diag(D.smc),B.wts=B.wts,R.part2)  } #So we try the function: 
 
 
>allr.wts(cor(X))  
$D.smc   [1] 0.25 0.25 
$B.wts  
[1,]  0.0  0.5 
[2,]  0.5  0.0 
$R.part2  #study the code in the function; this is an example of I - SR-1S 
[1,]  0.0  0.5 
[2,]  0.5  0.0  #Of course we will appreciate this more when p is larger 
 
 
Exercise: 
Try these ops for (first few rows?) of trees data, or *   *most quantitative 
data matrices, but use no more than say 10 rows; w/ say, 3 columns in your 
trials. You can of course do this multiple times, and if you do study what 
you get with reference to my notes given here. 


