
Z-scores, Matrix Inverses & Least Squares Regression (use R as you proceed)
X #we define X as:
[1,] 3 3 #plot these two columns!
[2,] 5 2 #to see the scatterplot
[3,] 1 1
> apply(X,2,mean)
[1] 3 2
> apply(X,2,sd) #so, var4 1
[1] 2 1
> X.d<-sweep(X,2,colMeans(X)) #see ?sweep
> X.d #of course this is our L%*%X (see below)
[1,] 0 1 #note: column sums now zero
[2,] 2 0
[3,] -2 -1
Alternatively, given
L <- function(n)diag(n) - matrix(1/n,n,n)
So we can use L(3)%*%X as our X.d #TRY IT!
> t(X.d)%*%X.d #same as t(X.d)%*%X (or X’L X)
 [,1] [,2] #square, symmetric
[1,] 8 2 #NB: SSqr/(n-1)=8/2 for column.1
[2,] 2 2
> Z.scrs <-scale(X) #i.e., ‘zscores’
[1,] 0.0 1 #each z score=(dev.score/sd)
[2,] 0.5 0 #sum(sqd.col.z-scores=sqrt(n-1))
[3,] -0.5 -1
> Z<-Z.scrs/sqrt(2) #because n = 3 here
> Z<-Z.scrs/sqrt(2) #i.e. sqrt(n-1)
> Z #Note that col. sums of sqrs = 1.00
[1,] 0.000 0.707
[2,] 0.707 0.000
[3,] -0.707 -0.707
> t(Z)%*%Z #equals cor(X)(same as cor(Z))
 [,1] [,2] #call this matrix R
[1,] 1.0 0.5
[2,] 0.5 1.0
>R-inverse<-solve(R) #diag values always=or > 1
 [,1] [,2]
[1,] 1.333 -0.667 #So R %*% R-Inverse = I
[2,] -0.667 1.333
>S.min.2<-diag(solve(R)) #a vector here (1.33)
> S.sqrd<-diag(1/S.min.2) #diag matrix
 [,1] [,2] #Be sure to see ?diag (and try)
[1,] 0.75 0.00 #complements of smc’s! (1-smc’s)
[2,] 0.00 0.75 #next, subtract these from 1’s.
> D.smc=diag(2)-S.sqrd
 #NB: D.smc = I - S2 [diag(2)=I,of order 2]
 [,1] [,2] #squared multiple correlations
[1,] 0.25 0.00 #in the diagonals
[2,] 0.00 0.25

Begin from ANY X for
which columns are no
interdependent.
(I’d recommend a small
matrix, not necessarily
the one I show at left;
make sure #rows >#cols)
Compute vector of
means and subtract
to get deviation scores,
say X.d
( see example). We
see that
X’L X is always
 square, symmetric.
& X’LX=(n-1)*var(X) .
Be sure to do all the
Operations.
(L is known to be
idempotent; look it up)

Z scores entail
rescaling columns of
X.d so that each entry
in Z of form [Z.scrs]
=(X[i,j]-mean)/sd.
Divide by square root
of (n-1) to get what I
call matrix Z, where,
Z’Z = R, the matrix of
product-moment
correlations,i.e.,cor(X)
 example shows that a
matrix R is computed
this way. Examine those
columns of Z.
Now compute the
inverse of R (w/solve)
to get another square,
symmetric matrix.
Define S-2 = diag(R-1),
(see S.min.2 on left;
also S.sqrd on left).
S2=inverse(S-2)[a diag]
Compute D.smc=I-S2, a
diag matrix of squared
multiple correlations
when predicting each
column of Z (or X) from
all other columns.

>sqrt(diag(2)-S.sqrd)
 [,1] [,2]#square roots=multiple correlatns
[1,] 0.5 0.0 #but with only one predictor,
[2,] 0.0 0.5 #these=original product-moment
 correlations (say, p-m r’s)

>Z.resds<-Z%*%solve(R)%*%S.sqrd
 [,1] [,2] #residuals for predicting
[1,] -0.354 0.707 #col.vectors of matrix Z
[2,] 0.707 -0.354 #a DIRECT product operation
[3,] -0.354 -0.354
VERIFY ABOVE USING STANDARD R functions!
> residuals(lsfit(Z[,2],Z[,1]))
[1] -0.354 0.707 -0.354 [now as row of course]
> residuals(lsfit(Z[,1],Z[,2]))
[1] 0.707 -0.354 -0.354 #for the two columns
>B.wts <-diag(2) - solve(R)%*%S.sqrd
#could also get Predicted Z columns by
#subtraction
>Z%*%B.wts #examine this carefully
 #l.s. predicted Z’s in each column
 [,1] [,2]
[1,] 0.354 0.000 #obtained by subtracting
[2,] 0.000 0.354 #residuals from original Z’s

[3 [3,] -0.354 -0.354

Th The geometry for these ops is especially
mp simple when there are only two columns in X.

 Satisfy yourself that you can describe all
 geometric relations using (this?) example.

Next we see that
Z.resds=ZR-1S2,the re-
siduals, predicting
each variable from all
others. So by subtrac-
tion we obtain ALL
predicted values:
Z.pred = Z - ZR-1S2,
Or Z.pred = Z(I- R-1S2)
where matrix in ()’s
is B = I – R-1S2 with
columns as vectors of
l.s. regression coefs
for predicting each
variable from all others.
[B.wts on left]
Note the generality:
All the preceding
algebra works for any
(data) matrix X,
regardless of how many
variables there are in X
(as long as X’s cols are
not mutually inter-
dependent).
The matrix I – SR-1S
contains PARTIAL
correlations between
each pair of variables
while ‘holding other
variables constant’.
(Recall dihedral angles
in the geometry hndout)

 #Note that the function below gets all the key results available from
input correlation matrix (if X itself not available)[copy/paste to R]
allr.wts <-function(rr){
rr assumed to be correlation matrix of full column rank; function
generates all sqrd multiple correlations (D.smc), predicting each variable
from all p-1 others; also, all vectors of regression coefficients (B.wts)
for same predictions; also all p-2 order partial correlations (R.part2)
pp<-ncol(rr) #usually p denotes number of variables/
r.inv<-solve(rr) #inverse of rr
S.min.2<-diag(r.inv) # a vector
S.sqrd<-1/S.min.2 #also a vector
S<-sqrt(S.sqrd) #still a vector
S.sqrd<-diag(S.sqrd) #now diag matrix
S<-diag(S) #now diag matrix
D.smc<-diag(pp)-S.sqrd
B.wts<-diag(pp) - r.inv%*%S.sqrd #Note: diagonal values always zero here
R.part2<-round(diag(pp) - S%*%r.inv%*%S,3) #a square,symmetric matrix
#special virtue of R.part2 wts is that these are regression wts (for post-

#multipling the matrix Z%*%S.minus1) that always fall in interval [0,1]
list(D.smc=diag(D.smc),B.wts=B.wts,R.part2) } #So we try the function:

>allr.wts(cor(X))
$D.smc [1] 0.25 0.25
$B.wts
[1,] 0.0 0.5
[2,] 0.5 0.0
$R.part2 #study the code in the function; this is an example of I - SR-1S
[1,] 0.0 0.5
[2,] 0.5 0.0 #Of course we will appreciate this more when p is larger

Exercise:
Try these ops for (first few rows?) of trees data, or * *most quantitative
data matrices, but use no more than say 10 rows; w/ say, 3 columns in your
trials. You can of course do this multiple times, and if you do study what
you get with reference to my notes given here.

