Illustrations, with comments and sources, for categorical data analysis

Begin w/ the caith example, here defined as a matrix (i.e., as.matrix(caith))

$$
\begin{array}{llll}
5.72 & 3.57 & 1.47 & 0.00
\end{array}
$$

The chi squared statistic for Cont. table is: 1240.03 with d.f. $=12$
obs $=$ observed frequencies matrix:

	F	R	M	D	B	blue light medium	dark		
F	1455	0	0	0	0	326	688	343	98
R	0	286	0	0	0	38	116	84	48
M	0	0	2137	0	0	241	584	909	403
D	0	0	0	1391	0	110	188	412	681
B	0	0	0	0	118	3	4	26	85
blue	326	38	241	110	3	718	0	0	0
light	688	116	584	188	4	0	1580	0	0
medium	343	84	909	412	26	0	0	1774	0
dark	98	48	403	681	85	0	0	0	1315

This matrix has been partitioned. The col. sums in diagonal above; the row sums in the diagonal below (right), i.e. marginal frequencies, and cross-tabs in the full matrix (symmetric). This is a raw sums of crossproducts matrix for Eye and Hair Color data; it is readily converted into a variance covariance matrix, seen below as cv.

That is, if the preceding is called the 'observed' frequencies matrix, we need only subtract from it, exp $=(1 / n) *$ outer (vsums, vsums) where vsums refers to vector of sums given as the diagonal of the obs matrix above, and n is sum of all entries off-diagonal (i.e. no. of cases); the function outer () finds the outer product of this vector w/ itself.

The name 'exp' here refers to expected values for cells if rows and columns are independent. (I do not print this exp.)

So obs - exp, could be generated for the whole obs matrix; but we will only print the obs - exp (numerators of terms in Chi Square statistic):
blue $\quad 132.1 \quad-0.119-43.8-75.4-12.73 \quad$ \#so \exp could be obtained
light $261.2 \quad 32.117$ - $42.8-220.0-30.61 \quad \#$ for each cell by adding
medium -136.1 -10.183 205.3 -46.1 -12.86 \# observed values above.
dark $\quad-257.2 \quad-21.814 \quad-118.7 \quad 341.4 \quad 56.20$
The entries of the preceding matrix are the deviations from expected values under the assumption of row and column independence. The sum of all entries is zero, by row and by column.

Correspondence analysis, generally, aims to exhibit structure that may exist in the pattern of values in the preceding matrix. The larger the chi square statistic, the greater the structure; and that structure could be 1, 2, 3 or even higher dimensional (although 2 dimensional is often sufficient to capture the main structural information).

The chi square statistic, the sum of squares of ((obs - exp)/ $\sqrt{\text { exp }), ~}$ across rows \& columns, here is: 1240.03 with d.f.= 12; i.e. very large, so it is reasonable to search for structure.

As seen above, the canonical correlations are: 0.446 0.173 0.029 0.022; I've underlined the first two, as they are both much larger than the last two, and so these data appear to have a 2 dimensional structure.

The key structural information is seen in the following coefficients matrix, where the two columns correspond to two 'derived factors' that account for more than 90% of the variance in the obs - exp matrix.

F	-3.692	1.723
R	-0.697	0.203
M	-0.239	-2.710
D	3.793	1.228
B	2.043	0.949
blue	-1.919	1.172
light	-3.095	0.871
medium	0.355	-2.881
dark	4.399	1.525

Define this 9×2 matrix as coefs2; then coefs $2 \% * \% ~ t(c o e f s 2)$, the product of the matrix times its transpose, is what shows how much of the structure of the matrix ((obs - exp)/Vexp) is recovered in this case. But it is the plot of these two columns that provides the key structural information, as seen here: (I use slightly different names, but the matrix caith.fc2 is just coefs2. plot(caith.fc2,ylim=c (-4,4.5))
\#ylim not essential (will explain) then
identify (caith.fc2,labels=rownames (caith.fc2)) \#to identify points.

Different algorithms yield (slightly) different results; but the structures are clearly similar. The interpretation follows from that of a conventional x, y scatterplot; values close proximity to one another for show how particular hair colors and eye colors 'go together' for this sample of data. The next example entails a larger matrix; 1 chose it because there is a detailed examination in the Intro2C.A.pdf.

The data here pertain to frequencies of doctorates granted in 8 selected years (columns) for 12 different disciplines in the U.S. I follow the same procedures outlined above, w/ little commentary, until the end. The matrix of frequencies is called doctx:

\section*{| 1960 | 1965 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Engineering	794	2073	3432	3495	3475	3338	3144	2959
Mathematics	291	685	1222	1236	1281	1222	1196	1149
Physics	530	1046	1655	1740	1635	1590	1340	1293
Chemistry	1078	1444	2234	2204	2011	1849	1792	1762
Earth Sciences	253	375	511	550	580	577	570	556
Biology	1245	1963	3360	3633	3580	3636	3473	3498
Agriculture	414	576	803	900	855	853	830	904
Psychology	772	954	1888	2116	2262	2444	2587	2749
Sociology	162	239	504	583	638	599	645	680
Economics	341	538	826	791	863	907	833	867
Anthropology	69	82	217	240	260	324	381	385
Others	314	502	1079	1392	1500	1609	1531	1550

canonical correlations are: 0.0960 .0570 .0170 .014 . . 2 dimensions appear to be indicated.

Square roots of singular values for Cont. table analysis are:"
$\begin{array}{llllllll}5.874 .52 & 2.47 & 2.22 & 1.71 & 1.53 & 1.37 & 0.01\end{array}$
The chi squared statistic is: 1684.37 with d.f. $=77$ \#again, LARGE, so we may very well find structure. We shall go immediatedly to the coefficients matrix, here (20 x 2), but arrayed on left/right here:

	$[, 1]$	$[, 2]$		Engineering	1.6126

Examination of patterns here will show which cols go w/ one another, as well as which rows are similar; also which rows and columns. But the graphic shows this far more vividly. I present it in two forms below.
C.A. plot (crossd.svd) for doctorates in USA, 2 dimensional

Note that the vertical dimension is reversed when comparing the two graphics. This is to be expected, as signs of columns of coefficients are always arbitrary. There are other differences too, but there is a general similarity. Do you prefer one to the other? Which?

General remarks: for 3 dimensions and more, plots can be done for columns as pairs, or dynamic graphics could be employed (possibly scatter3d, but I have not tried it). Clearly there are many ways to go, but in these two cases, 2 dimensional solutions see, to have been revealing of structure that 'makes sense.' See the Intro2CA.pdf where this example is described in more detail, and yet another graphic is shown, and it differs from each of these, at least to some extent.

An assocplot for these data is also revealing: (dput version of data below; dget can be used to recover this object)

An assocplot for the doctx data; note the patterns in deviations from independence

doctx:
structure (c (794, 291, 530, 1078, 253, 1245, 414, 772, 162, 341, 69, 314, 2073, 685, 1046, 1444, 375, 1963, 576, 954, 239, 538, 82, 502, 3432, 1222, 1655, 2234, 511, 3360, 803, 1888, 504, 826, 217, 1079, 3495, 1236, 1740, 2204, 550, 3633, 900, 2116, 583, 791, 240, 1392, $3475,1281,1635,2011,580,3580,855,2262$,

638, 863, 260, 1500, 3338, 1222, 1590, 1849, 577, 3636, 853,
2444, 599, 907, 324, 1609, 3144, 1196, 1340, 1792, 570, 3473,
830, 2587, 645, 833, 381, 1531, 2959, 1149, 1293, 1762, 556,
3498, 904, 2749, 680, 867, 385, 1550), . Dim = c (12L, 8L), .Dimnames $=$ list(

```
c("Engineering ", "Mathematics ", "Physics ", "Chemistry ",
"Earth Sciences ", "Biology ", "Agriculture ", "Psychology ",
"Sociology ", "Economics ", "Anthropology", "Others"), c("1960",
"1965", "1970", "1971", "1972", "1973", "1974", "1975")))
```

Finally, let us use the mosaicplot function (after transposing the matrix doctx). Interpret in relation to what you have seen above.
t(doctx)

