
First, we examine GEOMETRIC representations for contrasts, most easily viewed as 
PLANNED, for comparing groups (a la’ ANOVA); note general principles that start from 

geometric considerations & then move to algebra. NB: contrast coefficients sum to zero 
For two groups, only one comparison is 
possible: shown as a contrast between two 
treatments, here labeled as A,B; that is, we 
have a line w/ labels from -1 through to +1.  
I’m defining a ‘space’ of dimension 1 here, 
where the contrast coefficients are -1 & +1. 
(Move now to panel on the right, for 3 gps.) 
 
      A                                              B  
     -1                                            +1 
                             O 

         Suppose there are three groups. 
Then we may draw axes (here mutually 
orthogonal) that correspond to the plane on 
which these three points (groups) lie; the origin  
( O ) corresponds to intersection (c.f. V & H) 
 +2                            A   [  0  ]  <- zero weight 
       [where ‘2’ is chosen so the sum of it and  
                  the –1’s for B and C equals 0.] 
 H >__________________________ 
                                 O                 contrast matrix 
    Rotation around                                    V   H 
 origin ‘O’ is always                             A   2   0 
     an option!                                         B  -1   1 
-1             B              vs.             C         C  -1  -1       
                -1              V                +1     

For four groups, we need a three-space; 
think of a pyramid w/ regular sides, 

also called a tetrahedron. So this figure 
cannot be seen on a plane; but we do know 
its vertices and they are the groups we wish 

to compare: A,B,C & D. 
                         C   arrows make it too busy 
                                    but the idea is same. 
 
                         D     [ Above the plane ^ ] 
 
 
         A                            B 
  Now, imagine a plane parallel to this page 
(and to < A, B, C >); one can contrast D w/ 
the ‘lower’ three groups, and proceed then 
to make further contrasts among A,B & C, 
not unlike the method illustrated in upper 
right box here; note that the arrow points to 
a set of contrast coefficients where this idea 
is used, except C is compared w/ A,B at the 
second stage, and then A w/ B ignoring the 
others. Orthogonality for contrasts is NOT 
necessary, only helpful. 

More generally, for k groups, there can only be 
at most k –1 independent (could be orthogonal) 
contrasts among the k groups. Geometrically, 
this becomes hard to see, but there are many 

examples that can be illustrated using 
CONTRAST COEFFICIENTS matrices. 

e.g. Two possible X-sets w/ FOUR groups: 
A   -1   -1   -1      -3/4   1/2  -1/4 
B    1   -1   -1      -1/4  -1/2   3/4 
C    0    2   -1       1/4  -1/2  -3/4 
D    0    0    3       3/4   1/2  -3/4 
      Helmert^         Lin  Quad  Cubc 

And another for FIVE groups, following the 
same pattern as that above on the left. 

      x1   x2    x3   x4   each xj compares groups    
A   -1   -1   -1   -1      This type of contrast   
B     1   -1   -1   -1       matrix is called a Helmert 
C     0    2   -1   -1      form. The upper right  
D     0    0    3   -1     variety involves orthogonal 
E     0    0    0    4       polynomials. (Relax) 
Satisfy yourself that you can set one such matrix 

up for SIX groups, say, or more; there are 
always an INFINITE number of options for 

THREE or more groups (because coefficients 
could be decimal fractions). 

Each system of contrast coefficients can be seen as a specification for a matrix X  for use in a 
regression analysis that involves comparing groups. That coefficients sum to zero in each column 
is central. If we used the FIVE group contrast matrix in the lower right portion of table (w/ 4 
columns) to specify X, this would compare five groups of ‘y’ scores; we could set up the 
regression problem by merely stacking the y scores from these five groups on top of one another, 
to get one vector w/ n x 5 = N scores, and then repeat each row of the matrix X n times to 
accommodate individual y’s in these groups. Regression w/ X’s like this result in comparing 
MEANS of the groups, automatically!  granova.contr follows from these facts. You need to 
try this function w/ real data for 3 or 4 groups asap. Choose equal sized groups for this. 



 
 
The following two figures depict the contrast coefficients for what are called orthogonal polynomials. 
Note that when you issue the command contrasts.poly(k) in R, that k – 1 mutually orthogonal 
columns of contrast coefficients are generated. Lines that depict the trends associated w/ these columns are 
shown on the left for 3 columns when k is 4. Try it, but note that I scaled the columns so the sums of 
absolute values equals 2 for each column – which I shall explain in class. The function I wrote follows. 
 
                     Plots of contrast coefficients for orthogonal polynomial systems. 
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The three lines on the left, two jagged, correspond to linear, quadratic and cubic trends, those 
associated with the usual three columns of the orthogonal polynomial coefficients matrix. To use 
all three in a regression analysis is equivalent to stating that you are searching for regression 
coefficients for each term in a fully saturated model, one where all the between groups degrees of 
freedom are incorporated in the fitting and testing. Use of ONLY the linear coefficients in 
regression, i.e., -.67, -.22, .22, .67 (or, equivalently, -3, -1, 1, 3, or the downward trend values 3, 
1, -1, -1), as in the right hand plot, entails prespecification of a stronger, more specific, non-
saturated model. Simpler models of this form are not only easier to use, but they might yield 
more persuasive results. This depends on whether the particular linear prediction of the y-mean 
trend is supported by the data used in analysis. (Note that more degrees of freedom remain for the 
error term if only linear trend is used.) More generally, when prior theory or previous 
experimental results support a particular prediction, then use of contrasts whose coefficients 
correspond to that prediction of y-values (usually group mean y values) can often be justified in a 
planned comparison approach to analysis. From one rather purist point of view, this is THE way 
one should often approach design, given specific a priori, or advance, hypotheses. Modern 
practice, however, usually regards purist views as unrealistic. Much greater latitude is usually 
given to the analyst, to use exploratory as well as confirmatory strategies in analyses, where 
different models are compared, diagnostics are used, and less concern is given in practice to strict 
probabilistic interpretations of inferential results. Note that all this comes under the heading of 
planned comparisons, which must be distinguished from post-hoc comparisons in ANOVA 
settings, for which further discussion is provided below.  



 
Comparing Multiple Groups 
 
As you know, the method for comparing the means of two groups can be generalized to multiple 
groups and summarized by the formula. This is done by calculating an omnibus F statistic, written 
as F = MS(effect) / MS(error), where each MS is an estimate of a corresponding population 
variance. As in the above case, there is a null hypothesis where each group is seen to represent a 
population, for which all population means are equal (say H0: μ1=μ2=μ3). 
 
MS(effect), sometimes called MS (treatment), or MS (between), is usually thought of as variance 
of hypothesized populations means. MS(error) is usually taken to be a simple pooled within 
variance. (It is not uncommon, however, that the MS (error) term may estimate some combination 
of within sample variance and interaction.) The numerator MS for an F-statistic may be 
associated with one, two or several group comparisons, making the nature of F quite broad. In 
general, one needs to distinguish between ANOVA models with ‘FIXED, MIXED, or 
RANDOM’ factors, and this is strictly a matter of a priori judgment of the researcher.  
 
The most common application is to think of ANOVA as fixed effects, where typically at least 
some groups are formed or created as a result of manipulation (e.g., random assignment to 
treatment groups, where the treatments being compared are the only ones of interest, and these 
have been selected, not sampled from a larger set, by the investigator). The (pooled) variance 
within groups is taken to represent ‘error variance’ and so that dividing the variance between 
groups (i.e., the mean squares between) by the pooled variance within groups (the mean square 
within) yields the F-statistic in such a fixed effects situation. This computed sample F- statistic 
can be compared to a theoretical distribution for F, by comparing it with tabled F to which it 
corresponds (at some alpha level, for a particular pair of numerator and denominator degrees of 
freedom). As is the case of the t-test, one commonly uses .05 or .01 ‘levels of significance’ 
(alphas) as reference values in such comparisons. Should the observed F-statistic be larger than 
the tabled value, the NHST results in a finding of statistical significance. Such a result is taken to 
imply SOME difference in postulated population means that correspond to the sample groups 
being compared.  
 
Omnibus F-statistics generally do not have direct counterparts in confidence intervals, since CIs 
are feasible ONLY in situations where TWO groups are under comparison. More on this below.  
 
Planned Comparisons 
Conventional ANOVA questions can often be approached more effectively through the use of 
specific planned comparison contrasts; these can obviate the complications of post-hoc 
comparisons (to be discussed later) in many situations, as well as improve the power and focus of 
one’s analysis. Planned comparisons can be approached in several ways, but what is discussed 
below is largely grounded in John Tukey’s work on this topic (see Benjamini & Braun, 2002). 
Note that we shall refer to effect sizes as well as mean comparisons; population ESs are generally 
of the form ES = (μA - μB) /sigma where a difference between two population means is divided 
by an appropriate standard deviation, sigma; note that sample Effect Sizes are of the same form, 
but statistics replace the parameters for sample ESs.  
 
Suppose three groups (randomly formed) are to be compared, and are labeled A, B, & C. Two 
planned comparisons can be generated in this case, and they might take forms such as:  
I: μA - μB and 
II: (μA - μB)/2 - μC 



to indicate two independent comparison of two groups for these three groups. We can in this 
situation define two population effect size parameters as:  
ESI: ESI = (μA - μB)/σ 
ESII: ESII = [(μA - μB)/2 - μC]/σ 
 
where σ represents the common population variance. These comparisons are mutually orthogonal 
(at least when sample sized are equal) which serves the purpose of ensuring that each 
comparison/effect can be interpreted independently of the other. The idea of planned comparisons 
extends to any number of groups in principle, at least for fixed effect designs, but there cannot be 
more than J-1 orthogonal (or mutually independent) effects of this kind (where J is the number of 
groups under comparison) and the comparisons are planned in advance (i.e., a priori). 
 
Consider an example where one wishes to examine the effects of FOUR treatment conditions 
(medication (MED), behavioral (BI), combined (MB) and control (CTRL)) while working with 
children who exhibit attention deficit disorder behaviors. A typical strategy would be to randomly 
assign children to one of the four conditions; then following treatments, a dependent variable 
would be observed, perhaps using some kind of standardized assessment measure for ADHD 
behavioral disorders. Although standard ANOVA methods (based on use of an omnibus F-
statistic, in conjunction with some kind of post hoc comparison) to compare group differences (on 
the dependent variable) could be used this approach will often be problematic. That is, an overall 
F-statistic may not reach level of significance due to insufficient power (more later) which case 
one is led erroneously to conclude that no notable differences exist among treatments even when 
the treatments really do have differential effects. In such situations, a planned-comparison 
approach may yield several advantages. 
 
If the problem of assessing outcomes is addressed using planned comparisons (i.e., contrasts) then 
specific (combinations of) groups are compared to learn whether individual effects, i.e. specific 
planned comparisons, yield significant statistics, or not. The use of an a priori or planned 
comparison approach typically provides more support for causal inferences, but it also has the 
potential to be more powerful in the sense that real differences between specific treatment groups 
may be found that could have been missed by an omnibus F-test. In general, the specific contrasts 
to be made are informed by theory, prior knowledge, or previous research. 
 
In the context of the ADHD intervention example, prior research may makes it reasonable to 
study whether any or all of the following specific comparisons are ‘notable.’ 
 
(C1) The CTRL group mean differs from that of the other three (combined) groups. 
(C2) The combined MB treatment mean differ from the average of the BI and MED 
means, ignoring the control group. 
(C3) There is a difference between the BI and MED intervention treatments. 
The three contrast sets, columns C1 – C3 in the following table, represent the above questions 
using (orthogonal*) planned comparisons. The set-up for these contrasts is seen to have a 
‘Helmert’ form, where contrasts are now shown by columns: 
                   C1     C2     C3 
CTRL         1         0       0             where, again, C = Control, BI = Behavioral Intervention, 
MB           -1/3      1        0            MED = Medication and MB = Combined treatments. 
 BI            -1/3   -1/2       1 
MED        -1/3   -1/2      -1 
 
*To check if contrasts are orthogonal, take the cross products of any two column vectors, see if the total is zero (e.g., 
for C1 & C2: 1*0 = 0, -1/3*1=-1/3, -1/3*-1/2=1/6, -1/3*-1/2=1/6; and 0 – 1/3 +1/6 +1/6 = 0).  



 
The system of contrasts entails comparison of the control group with the three treatment 
conditions (C1), the combined treatment (MB) against two (pure) groups, (C2), and the direct 
comparison of the medication and behavioral intervention groups (C3). When contrasts are 
mutually orthogonal, the corresponding questions are mutually independent of one another, so 
that each comparison can be interpreted independent of others. This provides for the enhanced 
power as well as more focus, as noted earlier.  
 
For each such comparison, one can compute either a sample t-statistic, or a sample effect size 
(ES) to aid interpretation. As noted above each t-statistic has the basic form  
(mean1 - mean2)/ MS(error) where the ’s correspond in general to combined groups (e.g. all the 
groups w/ +’s, vs. all groups /w –‘s). In the case of effect sizes, the only thing that differs is that 
the denominator becomes a pooled standard deviation, usually computed as the square root of the 
mean square within groups. 
 
Note that contrasts can be generalized to more complex studies. For example, further support of 
causal inferences might be obtained from using the planned comparison with paired sample data. 
Using a pre-post measure of behavioral disorders, the subjects could be matched on some 
variable(s) and then assigned to the above groups. This would require a series of block and 
interaction contrasts. 
 
Post Hoc Comparisons 

 
Although planned comparisons offer greater power and control than post hoc tests, a brief 
discussion of these latter approaches are offered here since they are commonly used with 
ANOVA. Exploratory data analysis may seem to compel one to engage in an omnibus F-test to 
learn if there is any significant difference among group means. Supposing that one rejects the null 
hypothesis that the treatment means are equivalent in the population, the researcher is often left to 
do further study to learn whether evidence exists to support an argument that particular subgroup 
means differ in the population, based on more specific differences observed in his or her sample. 
The latter step is called post-hoc comparisons of treatment group means, and it is generally more 
flexible but less powerful than a corresponding planned comparison. 
 
So a typical exploratory approach is to first determine that a difference exists by using a formal 
null hypothesis (i.e., H0: μj=μj* for all j not equal to j*) and then follow up with multiple 
comparison tests to determine which means are different. In the context of this approach, this is 
necessary as one may be working with several means, and the F only indicates that a difference 
exists and does not say where. To address this problem, a multiple comparison technique such as 
the Scheffé test is used to compare two specific means of interest. The Scheffé formula entails a 
version of calculating the difference between two means and dividing by it by MS (error).  
 
To summarize, the issue at hand when considering whether to engage in contrasts or post hoc 
tests is based on whether one is asking specific questions in advance, as is required by planned 
comparisons, or to letting the data itself show if differences exist among groups by taking an 
exploratory approach. Depending on the context of the research, either approach might be 
justified, but it is advisable to pursue planned comparisons when possible, especially in contexts 
of experimental data analysis. Use Tukey’s (hsd) & Scheffe’s sheffe.test in R. 
 
Assumptions of Normality & Homogeneity & Transforming Data  
 
The use of ANOVA significance tests entails an assumption of normality in each hypothesized 
population distribution, and further, that these different populations have the same variance. The 



normality assumption is routinely violated in applications of ANOVA, but this is not such a bad 
thing as there is good evidence to suggest that one can do so without invalidating the test result 
(Box, 1953; Howell, 2002). Violations of the homogeneity of variance assumption are to be 
viewed more seriously, as these can more often invalidate test results.1  
 
The homogeneity of variance issue seems not to be addressed adequately in most applications of 
ANOVA, an issue that is exacerbated when dealing with groups of unequal sample sizes (Howell, 
2002). Simply put, conventional ANOVA entails the assumption that population variances across 
groups being analyzed are equal for the dependent variable in question. All is not lost however 
when such is not the case, as one often can transform scores for the dependent variable to help 
insure that distribution variances are similar across groups, and then run ANOVA on the 
transformed values. Tukey prefers the term re-expression, instead of transformation. This is 
because by transforming a data value, one does not alter its inherent value, but re-expresses it so 
that it is easier to manage. For example, when reporting a GRE score with a mean of 500 and 
standard deviation of 100, one is working with data that might initially have been expressed using 
raw scores (but this is a linear transformation, so use of GRE scores vs. their raw scores would 
have no notable effect in the ANOVA context).  
 
The logarithmic transformation is among the more common transformations, where a score is re-
expressed using a power of say 10 (i.e., log10). Such transformations may work well with data that 
are positively skewed; other options are square root and reciprocal transformations. Review of 
these and other transformations are available in many sources (see Howell), so suffice it to say 
here that this approach can be useful when dealing with skewed data or heterogeneous variances. 
It is often helpful to try different re-expressions when attempting to get data into a shape such that 
analyses may be conducted without having to be concerned about violating so many assumptions 
that any inference is unreasonable. 
 
A Nonparametric Alternative Based on Bootstrapping 
 
Again, one will not necessarily get into trouble when violating an assumption, since many test 
statistics are robust. But there may be many cases where it is better to make no assumptions about 
the parameters of an underlying population. One can free the analysis from some of the 
aforementioned assumptions via bootstrapping procedures (Efron & Tibshirani, 1993). The 
approach entails taking a given sample and assuming that the population from which it was 
drawn is distributed in the same manner as the samples (Howell, 2002). Once this assumption is 
made, one can sample (with replacement, using a computer), and this can be done several 
thousands of times, starting from the extant sample. Any number of statistics might be generated 
for each bootstrap sample. From these, one takes a nonparametric approach (in the sense that no 
assumptions need be made about populations) to computation of confidence intervals, tests of 
significance and so on using information from derived bootstrap distributions. More discussion is 
needed here of course. 
 
A Brief Note on Interactions 
 
When joint manipulation of two independent factors is conducted, one may analyze the data to 
learn whether there is evidence about whether, say, row and column treatments interact to 
influence outcomes. For example, it might be found that a positive outcome of some form of 
therapy is found only when it appears in conjunction with patients’ expectation that the therapy 
will be successful. This is called an interaction. Interactions are probably more common than are 
recognized; often the best evidence for interactions derives from use of graphical methods. The 
prospect of interaction should nearly always be considered in practice. 



A Big Caveat Regarding NHST 
 
Although the use of tests using NHST is by itself not particularly problematic, several 
knowledgeable analysts (e.g., Cohen, 1990, 1994) have concerns about the use of NHST in design 
unless steps are taken to be cognizant of what information significance tests do and do not offer. 
Arguably, the most fundamental problem raised by Cohen is that many researchers exhibit faulty 
logic when making NHST inferences. For example it is common to conclude that a rejected null 
hypothesis provides the basis for inferring that theory is established, the p value is often thought 
of as representing the probability that the null hypothesis is true, and the dichotomous decision 
associated with acceptance or rejection may promote disregard of data that could prove 
interesting or useful when seen in another light; effect sizes may offer one such benefit. Effect 
sizes can be especially helpful in planned comparison contexts.  
 
As noted above, using ANOVA has many forms, and potentially many uses. It is also true, 
however, that one must remain cognizant of common fallacies in logic that may be associated 
with NHST. Certainly, these concerns will be mitigated somewhat when using the more 
informative assessments of confidence intervals effect size estimates. In general, confidence 
intervals are to be preferred to significance tests, and this also means that planned comparisons 
are to be preferred to omnibus tests, since the former lend themselves to computation of both CIs 
and ESs, whereas the latter do not. See http://forrest.psych.unc.edu/jones-tukey112399.html for 
an important, readable alternative logic to underpin NHST; this was written by Lyle Jones & John 
Tukey, and it is well worth reading. 
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--------The function that standardizes contrast vectors, by columns follows: 
std.contr <- function(cont, tol = sqrt(.Machine$double.eps)^0.6)  
{ #generates 'standardized contrast vector'; positive & abs(negative) values  
# each sum to 1; cont assumed to consist of contrast(s) vector/matrix w/ mean zero;     
# otherwise stops 
if(!is.matrix(cont)) cont <- as.matrix(cont) 
if(abs(mean(cont)) > tol) 
stop("Input vector/matrix must have mean zero (for each column)") 
if(ncol(cont) == 1) 



cont <- matrix(cont, ncol = 1)#Strong assumption that cont is matrix  
dg <- apply(abs(cont), 2, sum) 
if(length(dg) == 1) 
dg <- as.matrix(dg)#print(paste("length(dg)", dg)) 
s.cont <- round(2 * cont %*% diag(1/dg),3)   
s.cont       } 


