
ONE WAY ANOVA, and some notes re: contrasts: 
 One way anova can be seen as a straight-forward generalization of the two independent 
sample comparison to accommodate a comparison of several groups. This is often taught as a 
hypothesis testing method. For J groups, with a single continuous response variate y for the groups, 
the null hypothesis is that means of the J populations are equal: 
    Ho:  *j jµ µ=  for all j ≠ j*,  versus the alternative, 
    H1:  *j jµ µ≠  for at least one j, j* pair.  
First, a quick example, I used data from http://faculty.vassar.edu/lowry/ch13pt1.html because 
Lowry presents a thorough discussion of ANOVA, using these same data for his illustrations: 

 

$grandsum 
 Grandmean  df.bet     df.with 
   18.20     2.00       12.00 
 MS.bet    MS.with      F.stat 
  9.80      4.23         2.31 
 F.prob      SS.bet/SS.tot  
  0.14            0.28 
 
The data were chosen to be VERY simple in 
case you wanted to check computations  
using your own data entry, etc.  
 
Be sure to compare results here w/ Lowry’s 
results, and see that there are no errors, 
nothing you cannot understand. 

 The null hypothesis in the one-way set up is an omnibus hypothesis. In other words, one 
does not prespecify anything as to what groups are to be compared, or what differences among 
(between) groups are to be tested; we only ask if there is evidence in sample data to reject the 
hypothesis that all means of the set of J populations are equal. In effect, this means that the analyst 
asks whether the estimate of the variance (sigma squared = 2σ , which is assumed to the same in all 
J populations), derived from the variation among the J sample means, is ‘notably’ larger than the 
estimate of the same variance derived from variation within groups. The numerator and 
denominator of the statistic F = MS(between)/MS(within) that each ratios is of the form SS/df. 
Some theoretical considerations: Note that the variance of J sample means (var(means)) can be 
seen as estimating 2σ /n when the population means are the same and n has same value in each 
group, nj = n for all j. This follows from basic facts – & your knowledge ? – about the sampling 
distribution of the mean. Thus, the mean square between groups is of the form n*var(means). 
The denominator of F on the other hand is computed as the simple average of the variances within 
all J groups (because all n’s are equal). So, under a true NULL hypothesis, the numerator and 
denominator of the F statistic estimate the same quantity. Note that the variance of J groups 
means would show ONLY simple random sampling variation IF populations really had the same 
means (i.e., null Ho true). But when all population means are NOT the same (i.e., H1 is true) then 
the variance of the sample means estimates a quantity LARGER than 2σ /n. Hence one should 
expect a systematically larger variance estimate between groups (i.e., between means of the J 
groups) for the numerator of F when the ALTERNATIVE hypothesis is true (when at least one 
population mean differs from the J-1 others).    
      In general, Expected value of MS(betw) = 2σ + n* 2σ (pop. means); but for the denominator, 
Expected value of MS(within) = 2σ , regardless of whether the null or alternative hypothesis is 
true. It follows that when the sample F exceeds some theoretical or tabular F(dfnum/dfden), we reject 



H0 in favor of the alternative H1. All this is useful to understand, but in practice, it is often better 
NOT do ONE WAY ANOVA, for several reasons that we should discuss. 
 One of the problems w/ one-way ANOVA when used for inference is that the omnibus 
hypothesis merely speaks to generic differences in population means; if one rejects the Ho, then 
post-hoc (multiple) comparisons are often advised to learn which means may be statistically 
different from on another. Planned comparisons are far better in principle, since they ask that the 
investigator think carefully in advance about which comparisons would be most interesting or 
informative. For example, suppose we had set Group C as a control group, where A and B were 
novel treatments to be compared first with one another, and then, as a combined group, w/ C.   
We can make this pair of planned comparisons using contrasts, using the following matrix:  
contr.helmert(3)  [  see the help, i.e. documentation] 
A   -1   -1          Note that column 1 compares A and B; column 2 compares (A,B) with C. 
B    1    -1         This general idea of superimposing contrasts on group comparisons works 
C    0     2         best, and most simply (especially for interpretations) when group sizes are equal. 
I shall use the function granova.contr to carry out the analysis; I also use the stack function 
again since it facilitates putting all three columns of the Lowry3gp matrix in a column vector. The 
same ideas work quite generally. (I needed to set Lowry3gp=data.frame(Lowry3gp) initially.) 

>granova.contr(stack(Lowry3gp)[,1], 
contr.helmert(3)) 
$summary.lm 
Call:   lm(formula = resp ~ contrst) 
 Coefficients: 
       Estimate Std.Error t value Pr(>|t|)     
(Intrcpt)18.200   0.531   34.26   ~0.0 *** 
contrst1  1.100   0.651    1.69    0.12     
contrst2  1.000   0.751    1.33    0.21     
-------------------- 
 Residual standard error: 2.06 on 12 
degrees of freedom.  
         Multiple R-squared: 0.278,  
         Adjusted R-squared: 0.158  
F-statistic: 2.31 on 2 and 12 DF,   
p-value: 0.141  
$means.pos.neg.coeff    (Study this!) 
      neg  pos  diff stEftSze 
[1,] 16.6  18.8  2.2   1.07 Rows index contrasts 
[2,] 17.7  19.2  1.5   0.73 
$contrasts (so-called standard contrasts—
will discuss) 
    [,1] [,2] 
1   -1   -0.5 
2    1   -0.5 
3    0    1.0 
$group.means.sds 
          [,1]   [,2]  [,3] 
Means     16.60 18.80 19.20 
S.D.s     2.07   1.92  2.17 
  
$data 
…snip…  
 

 
Note that the first row panels above show 
comparisons for contrasts of A vs. B, then for 
(A,B) vs. C, where the dashed blue line connects 
means for the respective comparisons. Given the 
means above, be sure that you understand (and 
that there are no errors). The final panel might be 
seen as a crude version of the granova.1w plot 
(here that is especially clear since the group 
means are ordered just as are A, B and C). 
You may want to TRY TO REPRODUCE ALL 
THESE results on your own machine. 

            A final note: As the $means.pos.neg.coeff array above suggests, it is easy to define standard-
ized effect sizes for each contrast by dividing mean differences by the pooled s.d. for each 
contrast. Each test statistic (actually a t [1.69, 1.33 above]) is just a constant times such a stES; 
further the average of these squared t’s is itself equal to the omnibus F statistic (try it to see).  
 


