R Graphics

SCS Short Course March 14, 2008

Archeology

- Archeological expedition
 - Basic graphics easy and flexible
 - Lattice (trellis) graphics powerful but less flexible
 - Rgl nice 3d but challenging
 - Tons of new stuff: e.g.
 - > install.packages("heplots")
 - > library(heplots)
 - > library(help=heplots)
 - Special purpose: library(car): avp
 - In development: Plot3d.R

Goals for graphics

Two purposes for graphics:

Exploratory

need something quick that can produce graphs as fast as your mind can grasp them

Presentation

need flexibility to meet publication requirements

Why 'Lattice=Trellis' graphics

Lattice (trellis) graphics:

developed at Bell Labs in early 80s

Marginality vs Conditional association

Motivation was problem of seeing relevant structures in higher dimensional data, the nub of the problem captured by Simpson's Paradox: two dimensional views of data show *marginal association*

But *conditional association* can be entirely different Interaction: conditional association can be different for different values of moderator variables

Smoking and Life Expectancy

Source of demographic data (from the CIA): http://www.nationmaster.com/

- Two variables:
 - Life Expectancy
 - Cigarette Consumption Per Capita
- > dl = read.csv("http://www.math.yorku.ca/~georges/Data/ CigLE.csv")
- > head(dl)

Data

> head(dl)

	Х	Count				ountry	Continent			LE	CigCon
1	1	Afgh				anistan			Asia		98
2	2	1				Albania		Europe		61.4	NA
3	3	Alge				lgeria	geria Africa			60.6	1021
4	4	A				ndorra		E	Europe	72.2	NA
5	5				Z	Angola		2	Africa	33.4	571
6	6	Anti	igua	and	Ba	arbuda	South	An	nerica	61.9	NA
>		ta	ail(dl)							
		X	Co	ounti	сy	Co	ontiner	nt	LE	CigCor	ı
18	34	184	V	ietna	am		As	ia	61.3	NZ	ł
18	35	185		Yeme	en		As	ia	49.3	NZ	Ŧ
18	36	186	2	Zambi	Ĺa		Afric	ca	34.9	408	3
18	37	187	Et]	hiopi	Ĺa		Afric	ca	NA	87	7
18	88	188	Vene	ezuel	La	South	Americ	ca	NA	1079	9
18	39	189	Ziı	nbaby	ve		Afric	ca	NA	399	•

Regression

> table(LE = !is.na(dl\$LE) , CigCon = !is.na(dl\$CigCon)) CigCon FALSE TRUE LE 0 FALSE 3 TRUE 83 103 fit = lm(LE ~ CigCon , dl , na.action = na.omit) > > summary(fit) Call: lm(formula = LE ~ CigCon, data = dl, na.action = na.omit) Residuals: Min 10 Median 3Q Max -19.4576 -5.8225 0.8188 5.3636 17.8291 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.799e+01 1.371e+00 34.995 < 2e-16 *** CigCon 8.528e-03 9.007e-04 9.468 1.33e-15 *** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 8.158 on 101 degrees of freedom (86 observations deleted due to missingness) Multiple R-Squared: 0.4702, Adjusted R-squared: 0.465 F-statistic: 89.64 on 1 and 101 DF, p-value: 1.333e-15

Interpreting coefficient

Regression coefficient for CigCon is 0.008529

- An increase in 1 cigarette per year increases Life Expectancy by 0.008529 years
- An increase in 1 cigarette per day increases Life Expectancy by 365 x 0.008529 = 3.11 years

All it takes is 3 cigarettes a day to add 10 years to your life.

Why graphics!

Always look at your data The **plot** function:

 The Joys of Object-Oriented Programming: plot is a generic function so it does different things to different kinds of objects

What does it do to a regression object?

> plot (fit)

Basic regression diagnostics

So 'plot' a fitted regression to get some diagnostic plots But diagnostics not enough to inspire understanding

What happens if we plot a data frame? > plot(dl)

Axis	Generic function to add an Axis to a Plot
abline	Add Straight Lines to a Plot
arrows	Add Arrows to a Plot
assocplot	Association Plots
axTicks	Compute Axis Tickmark Locations
axis	Add an Axis to a Plot
axis.POSIXct	Date and Date-time Plotting Functions
barplot	Bar Plots
box	Draw a Box around a Plot
boxplot	Box Plots
bxp	Draw Box Plots from Summaries
cdplot	Conditional Density Plots
contour	Display Contours
coplot	Conditioning Plots
curve	Draw Function Plots
dotchart	Cleveland Dot Plots
filled.contour	Level (Contour) Plots
fourfoldplot	Fourfold Plots
frame	Create / Start a New Plot Frame
graphics-package	The R Graphics Package
grid	Add Grid to a Plot
hist	Histograms
hist.POSIXt	Histogram of a Date or Date-Time Object

identify	Identify Points in a Scatter Plot
image	Display a Color Image
layout	Specifying Complex Plot Arrangements
legend	Add Legends to Plots
lines	Add Connected Line Segments to a Plot
locator	Graphical Input
matplot	Plot Columns of Matrices
mosaicplot	Mosaic Plots
mtext	Write Text into the Margins of a Plot
pairs	Scatterplot Matrices
panel.smooth	Simple Panel Plot
par	Set or Query Graphical Parameters
persp	Perspective Plots
pie	Pie Charts

Generic function *plot* and its methods:

plot
plot.data.frame
plot.default
plot.design

plot.factor
plot.formula
plot.histogram
plot.table
plot.window

plot.xy

Generic X-Y Plotting
Plot Method for Data Frames
The Default Scatterplot Function
Plot Univariate Effects of a
 'Design' or Model
Plotting Factor Variables
Formula Notation for Scatterplots
Plot Histograms
Plot Methods for 'table' Objects
Set up World Coordinates for
 Graphics Window
Basic Internal Plot Function

points	Add Points to a Plot
polygon	Polygon Drawing
rect	Draw One or More Rectangles
rug	Add a Rug to a Plot
screen	Creating and Controlling Multiple Screens on a
	Single Device
segments	Add Line Segments to a Plot
spineplot	Spine Plots and Spinograms
stars	Star (Spider/Radar) Plots and Segment Diagrams
stem	Stem-and-Leaf Plots
stripchart	1-D Scatter Plots
strwidth	Plotting Dimensions of Character Strings and
	Math Expressions
sunflowerplot	Produce a Sunflower Scatter Plot
symbols	Draw Symbols (Circles, Squares, Stars,
	Thermometers, Boxplots) on a Plot
text	Add Text to a Plot
title	Plot Annotation
xinch	Graphical Units

Continue with example script file: From R:

> download.file(<u>http://</u> <u>www.math.yorku.ca/~georges/R/R-Graphics.R</u>, "R-Graphics.R")

Then load in R via "File | Open script ..."

Links

Local wiki: (contact <u>georges@yorku.ca</u> for account to edit) http://wiki.math.yorku.ca

navigate to R Index

R Graphics: <u>http://csg.sph.umich.edu/docs/R/graphics-1.pdf</u> Gallery of R Graphics:

http://addictedtor.free.fr/graphiques/

- very fancy, it would be nice to have an ordinary version
 R Graphics Gallery:
- <u>http://research.stowers-institute.org/efg/R/</u>